Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482357

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.

2.
J Infect Dis ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064677

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters. Samples were obtained 1-28 days after infection and analyzed by ELISA, neutralization, and Fc-mediated effector function assays. NiV infection elicited robust antibody responses against the nucleoprotein and attachment glycoprotein. Levels of neutralizing antibodies were modest and only detectable in surviving animals. Fc-mediated effector functions were mostly observed in nucleoprotein-targeting antibodies. Antibody levels and activities positively correlated with challenge dose.

3.
Sci Rep ; 13(1): 19384, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938597

RESUMO

Reverse-transcription quantitative polymerase chain reaction assays are frequently used to evaluate gene expression in animal model studies. Data analyses depend on normalization using a suitable reference gene (RG) to minimize effects of variation due to sample collection, sample processing, or experimental set-up. Here, we investigated the suitability of nine potential RGs in laboratory animals commonly used to study viral hemorrhagic fever infection. Using tissues (liver, spleen, gonad [ovary or testis], kidney, heart, lung, eye, brain, and blood) collected from naïve animals and those infected with Crimean-Congo hemorrhagic fever (mice), Nipah (hamsters), or Lassa (guinea pigs) viruses, optimal species-specific RGs were identified based on five web-based algorithms to assess RG stability. Notably, the Ppia RG demonstrated stability across all rodent tissues tested. Optimal RG pairs that include Ppia were determined for each rodent species (Ppia and Gusb for mice; Ppia and Hrpt for hamsters; and Ppia and Gapdh for guinea pigs). These RG pair assays were multiplexed with viral targets to improve assay turnaround time and economize sample usage. Finally, a pan-rodent Ppia assay capable of detecting Ppia across multiple rodent species was developed and successfully used in ecological investigations of field-caught rodents, further supporting its pan-species utility.


Assuntos
Arenavirus do Novo Mundo , Vírus da Dengue , Vírus da Febre Hemorrágica da Crimeia-Congo , Cricetinae , Feminino , Masculino , Cobaias , Animais , Camundongos , Modelos Animais , Ciclofilina A , RNA
4.
J Infect Dis ; 228(Suppl 6): S446-S459, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849404

RESUMO

Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Surtos de Doenças
5.
Emerg Microbes Infect ; 12(2): 2265660, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787119

RESUMO

Ebola disease outbreaks are major public health events because of human-to-human transmission and high mortality. These outbreaks are most often caused by Ebola virus, but at least three related viruses can also cause the disease. In 2022, Sudan virus re-emerged causing more than 160 confirmed and probable cases. This report describes generation of a recombinant Sudan virus and demonstrates its utility by quantifying antibody cross-reactivity between Ebola and Sudan virus glycoproteins after human infection or vaccination with a licensed Ebola virus vaccine.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Anticorpos Antivirais , Ebolavirus/genética , Vacinação , Glicoproteínas/genética
6.
Antiviral Res ; 219: 105718, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758067

RESUMO

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Assuntos
Antivirais , Pró-Fármacos , Antivirais/farmacologia , Pró-Fármacos/farmacologia , Nucleosídeos/farmacologia , Glicerol , Lipídeos/farmacologia
7.
Virology ; 588: 109888, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774602

RESUMO

Arenaviruses are highly pathogenic viruses that pose a serious public health threat. Chapare virus (CHAV) and Machupo virus (MACV), two New World arenaviruses, cause hemorrhagic fevers with case fatality rates of up to 45%. Research on therapeutic drug targets and vaccines for these viruses is limited because biosafety level 4 containment is required for handling them. In this study, we developed reverse genetics systems, including minigenomes and recombinant viruses, that will facilitate the study of these pathogens. The minigenome system is based on the S segment of CHAV or MACV genomes expressing the fluorescent reporter gene ZsGreen (ZsG). We also generated recombinant CHAV and MACV with and without the ZsG reporter gene. As a proof-of-concept study, we used both minigenomes and recombinant viruses to test the inhibitory effects of previously reported antiviral compounds. The new reverse genetics system described here will facilitate future therapeutic studies for these two life-threatening arenaviruses.


Assuntos
Arenavirus do Novo Mundo , Genética Reversa
8.
J Infect Dis ; 228(Suppl 7): S474-S478, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37596837

RESUMO

Although there are now approved treatments and vaccines for Ebola virus disease, the case fatality rate remains unacceptably high even when patients are treated with the newly approved therapeutics. Furthermore, these countermeasures are not expected to be effective against disease caused by other filoviruses. A meeting of subject-matter experts was held during the 10th International Filovirus Symposium to discuss strategies to address these gaps. Several investigational therapeutics, vaccine candidates, and combination strategies were presented. The greatest challenge was identified to be the implementation of well-designed clinical trials of safety and efficacy during filovirus disease outbreaks. Preparing for this will require agreed-upon common protocols for trials intended to bridge multiple outbreaks across all at-risk countries. A multinational research consortium including at-risk countries would be an ideal mechanism to negotiate agreement on protocol design and coordinate preparation. Discussion participants recommended a follow-up meeting be held in Africa to establish such a consortium.


Assuntos
Ebolavirus , Infecções por Filoviridae , Filoviridae , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Surtos de Doenças/prevenção & controle , África
9.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540755

RESUMO

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/genética , Vacinação , Modelos Animais de Doenças , Vírus Nipah/genética , Replicon
10.
Virology ; 587: 109858, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544045

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus with a high case fatality rate. Due to its high pathogenicity, pandemic potential, and lack of therapeutics or approved vaccines, its study requires biosafety level 4 (BSL4) containment. In this report, we developed a novel neutralization assay for use in biosafety level 2 laboratories. The assay uses a recombinant vesicular stomatitis virus expressing NiV glycoprotein and a fluorescent protein. The recombinant virus propagates as a replication-competent virus in a cell line constitutively expressing NiV fusion protein, but it is restricted to a single round of replication in wild-type cells. We used this system to evaluate the neutralization activity of monoclonal and polyclonal antibodies, plasma from NiV-infected hamsters, and serum from human patients. Therefore, this recombinant virus could be used as a surrogate for using pathogenic NiV and may constitute a powerful tool to develop therapeutics in low containment laboratories.

11.
Sci Rep ; 13(1): 11384, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452062

RESUMO

Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.


Assuntos
Vírus Nipah , Poxviridae , Vacinas Virais , Animais , Humanos , Gatos , Camundongos , Cães , Suínos , Cavalos , Vírus Vaccinia/genética , Vetores Genéticos/genética , Anticorpos Antivirais
12.
Antiviral Res ; 216: 105658, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356729

RESUMO

Remdesivir is a nucleotide prodrug with preclinical efficacy against lethal Nipah virus infection in African green monkeys when administered 1 day post inoculation (dpi) (Lo et al., 2019). Here, we determined whether remdesivir treatment was still effective when treatment administration initiation was delayed until 3 dpi. Three groups of six African green monkeys were inoculated with a lethal dose of Nipah virus, genotype Bangladesh. On 3 dpi, one group received a loading dose of 10 mg/kg remdesivir followed by daily dosing with 5 mg/kg for 11 days, one group received 10 mg/kg on 12 consecutive days, and the remaining group received an equivalent volume of vehicle solution. Remdesivir treatment initiation on 3 dpi provided partial protection from severe Nipah virus disease that was dose dependent, with 67% of animals in the high dose group surviving the challenge. However, remdesivir treatment did not prevent clinical disease, and surviving animals showed histologic lesions in the brain. Thus, early administration seems critical for effective remdesivir treatment during Nipah virus infection.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Chlorocebus aethiops , Infecções por Henipavirus/tratamento farmacológico , Infecções por Henipavirus/prevenção & controle , Encéfalo , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico
13.
Antiviral Res ; 214: 105619, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142192

RESUMO

Seoul virus (SEOV) is an emerging global health threat that can cause hemorrhagic fever with renal syndrome (HFRS), which results in case fatality rates of ∼2%. There are no approved treatments for SEOV infections. We developed a cell-based assay system to identify potential antiviral compounds for SEOV and generated additional assays to characterize the mode of action of any promising antivirals. To test if candidate antivirals targeted SEOV glycoprotein-mediated entry, we developed a recombinant reporter vesicular stomatitis virus expressing SEOV glycoproteins. To facilitate the identification of candidate antiviral compounds targeting viral transcription/replication, we successfully generated the first reported minigenome system for SEOV. This SEOV minigenome (SEOV-MG) screening assay will also serve as a prototype assay for discovery of small molecules inhibiting replication of other hantaviruses, including Andes and Sin Nombre viruses. Ours is a proof-of-concept study in which we tested several compounds previously reported to have activity against other negative-strand RNA viruses using our newly developed hantavirus antiviral screening systems. These systems can be used under lower biocontainment conditions than those needed for infectious viruses, and identified several compounds with robust anti-SEOV activity. Our findings have important implications for the development of anti-hantavirus therapeutics.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Vírus Seoul , Humanos , Orthohantavírus/genética , Vírus Seoul/genética , Seul , Proteínas Recombinantes , Glicoproteínas , Vesiculovirus/genética
14.
J Infect Dis ; 228(Suppl 7): S536-S547, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37145895

RESUMO

Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Camundongos , Ebolavirus/genética , Virulência , Mutação
15.
Antiviral Res ; 210: 105496, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567020

RESUMO

Development of lethal models of Ebola virus disease has been achieved by the serial passage of virus isolates from human cases in mice and guinea pigs. Use of mice infected with non-adapted virus has been limited due to the absence of overt clinical disease. In recent years, newly recognized sequelae identified in human cases has highlighted the importance of continued investigations of non-lethal infection both in humans and animal models. Here, we revisit the use of rodent-adapted and non-adapted Ebola virus (EBOV) in mice to investigate infection tolerance and future utility of these models in pathogenesis and therapeutic intervention studies. We found that like non-adapted wild-type EBOV, guinea pig-adapted EBOV resulted in widespread tissue infection, variably associated with tissue pathology, and alterations in clinical and immunological analytes in the absence of overt disease. Notably, infection with either non-lethal variant did not greatly differ from lethal mouse-adapted EBOV until near the time end-point criteria are reached in these mice. These data support future investigations of pathogenesis, convalescence, and sequelae in mouse models of virus tolerance.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Cobaias , Humanos , Animais , Camundongos , Ebolavirus/genética , Modelos Animais de Doenças
16.
Antiviral Res ; 209: 105490, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521633

RESUMO

Human infection with Sosuga virus (SOSV), a recently discovered pathogenic paramyxovirus, has been reported in one individual to date. No animal models of disease are currently available for SOSV. Here, we describe initial characterization of experimental infection in Syrian hamsters, including kinetics of virus dissemination and replication, and the corresponding clinical parameters, immunological responses, and histopathology. We demonstrate susceptibility of hamsters to infection in the absence of clinical signs or significant histopathologic findings in tissues.


Assuntos
Paramyxoviridae , Cricetinae , Animais , Humanos , Mesocricetus , Paramyxoviridae/fisiologia , Modelos Animais , Modelos Animais de Doenças
17.
Nat Commun ; 13(1): 7298, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435827

RESUMO

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Camundongos , Humanos , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Febre Hemorrágica da Crimeia/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Anticorpos Monoclonais
19.
Am J Infect Control ; 50(8): 863-870, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35908824

RESUMO

BACKGROUND: The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. METHODS: We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. RESULTS: Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. CONCLUSIONS: These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.


Assuntos
COVID-19 , Doença pelo Vírus Ebola , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus Nipah , COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Azul de Metileno/farmacologia , Respiradores N95 , Pandemias/prevenção & controle , SARS-CoV-2 , Ventiladores Mecânicos
20.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35704480

RESUMO

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Assuntos
Arenavirus do Novo Mundo , Febre Hemorrágica Americana , RNA Viral , Roedores , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/isolamento & purificação , Bolívia/epidemiologia , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Transmissão de Doença Infecciosa , Febre Hemorrágica Americana/complicações , Febre Hemorrágica Americana/genética , Febre Hemorrágica Americana/transmissão , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/genética , Febres Hemorrágicas Virais/transmissão , Febres Hemorrágicas Virais/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação , Ratos/virologia , Roedores/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...